MiniCLEAN surface backgrounds

Boqian Wang, Richard Schnee Syracuse University April APS Meeting 2011

DEAP/CLEAN Collaborators

University of Alberta B. Beltran, P. Gorel, A. Hallin, S. Liu, C. Ng, K.S. Olsen, J. Soukup

> Boston University D. Gastler, E. Kearns

<u>Carleton University</u> M. Bowcock, K. Graham, P. Gravelle, C. Oullet

> Harvard University J. Doyle

Los Alamos National Laboratory R. Bourque, V.M. Gehman, J. Griego, R. Henning-Yeomans, A. Hime, F. Lopez, J. Oertel, K. Rielage, L. Rodriguez, S. Seibert,

A. Hime, F. Lopez, J. Oertel, K. Rielage, L. Rodriguez, S. Seibert D. Steele

<u>Massachusetts Institute of Technology</u> L. Feng, J.A. Formaggio, S. Jaditz, J. Kelsey, J. Monroe, K. Palladino

National Institute Standards and Technology

K. Coakley

University of New Mexico M. Bodmer, F. Giuliani, M. Gold, D. Loomba, J. Matthews, P. Palni University of North Carolina/TUNL

M.Akashi-Ronquest, R. Henning

<u>University of Pennsylvania</u> T. Caldwell, J.R. Klein, A. Mastbaum, G.D. Orebi Gann

Queen's University

M. Boulay, B. Cai, M. Chen, S. Florian, R. Gagnon, V. Golovko, P. Harvey, M. Kuzniak, J. Lidgard, A. McDonald, T. Noble, P. Pasuthip, C. Pollman, W. Rau, P. Skensved, T. Sonley, M. Ward

SNOLAB Institute

M. Batygov, F.A. Duncan, I. Lawson, O. Li, P. Liimatainen, K. McFarlane, T. O'Malley, E.Vazquez-Jauregi

<u>University of South Dakota</u> V. Guiseppe, D.-M. Mei, G. Perumpilly, C. Zhang

> Syracuse University M.S. Kos, R.W. Schnee, B.Wang

TRIUMF P.-A. Amaudruz, A. Muir, F. Retiere

Yale University W.H. Lippincott, D.N. McKinsey, J.A. Nikkel, Y. Shin

MiniCLEAN: dark matter detector

- liquid argon scintillation
- 500kg target mass
- 150kg fiducial mass
- 92 PMTs
- Start taking data at 2012
- 2000m underground SNOLAB
- O(10⁻⁴⁵cm²)

MiniCLEAN: dark matter detector

MiniCLEAN: dark matter detector

MiniCLEAN: surface alpha decay

Pulse shape discrimination(PSD)

Fprompt: % of light detected in first 100ns

0.9

Pulse shape discrimination(PSD)

Boulay and Hime, Astropart. Phys. 25, 179 (2006) Pollmann, Boulay, Kuzniak arXiv:1011.1012v1

Fprompt: % of light detected in first 100ns 10⁻¹ electrons nuclear recoils surface event

Ways to discriminate against surface background
1. Energy range 75-150 #PE ~20-40keVee
2. Pulse shape discrimination
3. Position reconstruction 30% fiducial volume

Screening to ensure clean acrylic, radon construction Screening to ensure samll plate-out on TPB-surface after detector construction

Surface alpha background

²³⁸U,²³²Th dacay in bulk of acrylic

²²²Rn daughter dacay on surface of acrylic

²³⁸U,²³²Th dacay in bulk of TPB

²²²Rn daughter dacay on surface of TPB

Pulse shape discrimination

PE hit time distribution

Pulse shape discriminator ratio of light from [50,710ns] window to total light

Pulse shape discriminator ratio of light from [50,710ns] window to total light

Position reconstruction

fraction of total light in a single PMT

help to distinguish misreconstructed surface event

Conclusion

- The most dangerous surface background is alpha decay on TPB surface with nucleus goes into LAr
- By using the energy range cut, PSD, position reconstruction, the amount of surface background reduced from estimated 50k events/year to 0.2/year