

Neutron Calibration System for the MiniCLEAN Experiment

Lu Feng for the MiniCLEAN collaboration APS April Meeting May 2, 2011

The MiniCLEAN Experiment

Mini-Cryogenic Low Energy Astrophysics with Noble liquids

Dark matter direct detection using single-phase liquid argon/neon detector.

Located in Cube Hall at SNOLAB, near Sudbury, Ontario, Canada. depth ~2073m

Two-year run with liquid argon, with ~150kg fiducial mass, energy range 50-100keVr (12.5-25keVee), and sensitivity 2x10⁻⁴⁵cm² at 90% C.L. for 100GeV WIMP mass.

M.G. Boulay and A. Hime, Astroparticle Physics 25, 179 (2006)

Signal Detection

Detect scintillation light resulting from dark-matter induced nuclear recoils with 92 8-inch Hamamatsu R5912 photomultiplier tubes (PMT).

Neutrons produce the same signal:

- 1. Background
 - e.g. (alpha, n) PMT neutrons
- 2. External calibration sources

Calibration Goals

Characterize detector response to nuclear recoils. Benchmark neutron simulation physics to understand background. Test techniques to tag neutrons.

Neutron Calibration Sources

- 1. Deuterium-Deuterium neutron source
 - most of the radiation comes from neutrons
 - monoenergetic ~2.45MeV
 - control: turn (pulsing) on/off, movable source
- 2. Tagged americium-beryllium source
 - neutrons with energies up to 12MeV
- 3. "Hot PMT": similar to PMT glass but with high uranium/thorium content

Neutron Source: "Minitron"

Deuterium-Deuterium neutron source provided by Schlumberger Limited.

Spellman High Voltage Electronics

Spellman High Voltage Electronics

>> what affects neutron yield

Spellman High Voltage Electronics

>> what affects neutron yield
>> what controls pulsing

tunable frequency/duty cycle

Spellman High Voltage Electronics

> what affects neutron yield
> what controls pulsing

>> what measures neutron yield

~10⁵ n/sec at 40kV and $50\mu A$

Minitron Measurement

cathode at 2.37A,

filament unchanged

neutron production rate $\propto [\sigma(E) * n_T * n_P]$

 \rightarrow at 40kV, neutron yield is ~10³n/µC, resulting in ~10⁵n/sec for 50µA

Minitron Deployment

high voltage supply holder

Canister position measured by yo-yo potentiometer.

We set the frequency at which the position is measured, and currently we require the winch to stop if the canister is within 1/7cm of its intended location.

Measured velocity of winch: ~1.3 cm/s

canister

prototype

"Tall Test"

Mechanical test of the prototype deployment system at roughly the height (~5m) at which it will be positioned relative to the detector.

Yo-yo pot: mean = 0.01cm, RMS = 0.05cm

Neutron Calibration System

how everything fits together

Presence of calibration tube and canister do not significantly affect the neutron nuclear recoil spectrum. Deployment system sits on the deck above the water tank.

Conclusion

Neutrons produce the same signal as dark matter particles.

External neutron sources will help calibrate and benchmark neutron physics.

Minitron: pulsed deuterium-deuterium source

- $\rightarrow\,$ pulsing at tunable frequency and duty cycle
- \rightarrow yield: ~10⁵ n/sec
- \rightarrow variable calibration position
- → material surrounding Minitron does not significantly alter energy spectrum